Reappraising the Need for Bulk Heterojunctions in Polymer-Fullerene Photovoltaics: The Role of Carrier Transport in All-Solution-Processed P3HT/PCBM Bilayer Solar Cells

نویسندگان

  • Alexander L. Ayzner
  • Christopher J. Tassone
  • Sarah H. Tolbert
  • Benjamin J. Schwartz
چکیده

The most efficient organic solar cells produced to date are bulk heterojunction (BHJ) photovoltaic devices based on blends of semiconducting polymers such as poly(3-hexylthiophene-2,5-diyl) (P3HT) with fullerene derivatives such as [6,6]-penyl-C61-butyric-acid-methyl-ester (PCBM). The need for blending the two components is based on the idea that the exciton diffusion length in polymers like P3HT is only ∼10 nm, so that the polymer and fullerene components must be mixed on this length scale to efficiently split the excitons into charge carriers. In this paper, we show that the BHJ geometry is not necessary for high efficiency, and that all-solution-processed P3HT/PCBM bilayer solar cells can be nearly as efficient as BHJ solar cells fabricated from the same materials. We demonstrate that o-dichlorobenzene (ODCB) and dichloromethane serve nicely as a pair of orthogonal solvents from which sequential layers of P3HT and PCBM, respectively, can be spin-cast. Atomic force microscopy, various optical spectroscopies, and electron microscopy all demonstrate that the act of spin-coating the PCBM overlayer does not affect the morphology of the P3HT underlayer, so that our spin-cast P3HT/PCBM bilayers have a well-defined planar interface. Our fluorescence quenching experiments find that there is still significant exciton splitting in P3HT/PCBM bilayers even when the P3HT layer is quite thick. When we fabricated photovoltaic devices from these bilayers, we obtained photovoltaic power conversion efficiencies in excess of 3.5%. Part of the reason for this high efficiency is that we were able to separately optimize the roles of each component of the bilayer; for example, we found that thermal annealing has relatively little effect on the nature of P3HT layers spin-cast from ODCB, but that it significantly increases the crystallinity and thus the mobility of electrons through PCBM. Because the carriers in bilayer devices are generated at the planar P3HT/PCBM interface, we also were able to systematically vary the distance the carriers have to travel to be extracted at the electrodes by changing the layer thicknesses without altering the bulk mobility of either component or the nature of the interfaces. We found that devices have the best fill-factors when the transit times of electrons and holes through the two layers are roughly balanced. In particular, we found that the most efficient devices are made with P3HT layers that are about four times thicker than the PCBM layers, demonstrating that it is the conduction and the extraction of electrons through the fullerene that ultimately limit the performance of both bilayer and BHJ devices based on the P3HT/ PCBM material combination. Overall, we believe that polymer-fullerene bilayers provide several advantages over BHJ devices, including reduced carrier recombination and a much better degree of control over the properties of the individual components and interfaces during device fabrication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafast Dynamics of Localized and Delocalized Polaron Transitions in P3HT/PCBM Blend Materials: The Effects of PCBM Concentration

Nowadays, organic solar cells have the interest of engineers for manufacturing flexible and low cost devices. The considerable progress of this nanotechnology area presents the possibility of investigating new effects from a fundamental science point of view. In this letter we highlight the influence of the concentration of fullerene molecules on the ultrafast transport properties of charged el...

متن کامل

Highly efficient exciton harvesting and charge transport in ternary blend solar cells based on wide- and low-bandgap polymers.

We have designed highly efficient ternary blend solar cells based on a wide-bandgap crystalline polymer, poly(3-hexylthiophene) (P3HT), and a low-bandgap polymer, poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2'3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBT), and a fullerene derivative (PCBM). By using highly crystalline P3HT, high fill factors were obtained even for ternary ...

متن کامل

Ultrafast Studies of Exciton Migration and Polaron Formation in Sequentially Solution-Processed Conjugated Polymer/Fullerene Quasi-Bilayer Photovoltaics.

We examine the ultrafast dynamics of exciton migration and polaron production in sequentially processed 'quasi-bilayer' and preblended 'bulk heterojunction' (BHJ) solar cells based on conjugated polymer films that contain the same total amount of fullerene. We find that even though the polaron yields are similar, the dynamics of polaron production are significantly slower in quasi-bilayers than...

متن کامل

Light Weight, Flexible, Nanostructured Organic Solar Cells for Space Applications

Improving the efficiency of organic solar cells (OSCs), which are far less efficient than inorganic semiconductor solar cells, is of paramount importance to the field of polymer photovoltaics. Current state-of-the-art bulk heterojunction (BHJ) OSCs utilize a homogeneous blend of the semiconducting polymer poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl C61butyric acid me...

متن کامل

Room to Improve Conjugated Polymer-Based Solar Cells: Understanding How Thermal Annealing Affects the Fullerene Component of a Bulk Heterojunction Photovoltaic Device

We examine how thermal annealing affects the fullerene network in conjugated polymer bulk heterojunction (BHJ) solar cells. We begin by creating electron-only devices with a BHJ geometry by blending the fullerene derivative [6,6]-phenyl-C61-butyric-acid-methyl-ester (PCBM) with polystyrene (PS). These electron-only PS:PCBM diodes function even with a poly(ethylenedioxithiophene):poly(styrenesul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009